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Percolation processes in three dimensions 
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Abstmct. The derivation of low-density series expansions for the mean cluster size in 
random site and bond mixtures on a three-dimensional lattice is described briefly. New data 
are given for the face-centred cubic, body-centred cubic, simple cubic and diamond lattices. 
The critical concentration for the site problem is estimated as pc=O*198i0*0O3 (FCC), 
pc=O.245iO.0O4 (BCC), p,=O~31OiO~OO4 (sc), p,=0.428*0.004 (D); for the bond 
problem as p , = o ~ 1 1 9 i o ~ o o 1  (FCC), pc=0~1785io.002 (BCC), p,=0.247*0.003 (SC), 
p E  = 0.388 i 0.005 (D). It is concluded that the data are reasonably consistent with the 
hypothesis that the mean cluster size S ( p ) = C ( p , - p ) - y  as p +p,-with y a dimensional 
invariant, y = 1.66i0.07 in three dimensions. Estimates of the critical amplitude C are 
also given. 

1. Introduction 

In this paper we describe briefly the derivation and analysis of series expansions 
required for a study of random mixtures of sites (or bonds) on a three-dimensional 
lattice. We have described the theoretical background and introduced the series 
method in earlier papers (Sykes and Glen 1976, Sykes etal 1976a,b,c to be referred to 
as I-IV). Our objectives are to estimate the critical concentration for the more usual 
three-dimensional lattices and to investigate the hypothesis (Sykes and Essam 1964) 
that the critical index for the mean cluster size is a dimensional invariant. Explicitly we 
investigate the hypothesis that 

S ( p ) -  c ( P c - P ) - ’ ,  P + P c - .  (1.1) 

y = 2.43 f 0.03. (1.2) 
We shall not examine the high density region since a pilot investigation (Sykes et a1 
1976d) has led us to conclude that except for the face-centred cubic lattice it is very 
difficult to draw firm conclusions with the data currently available. 

In I1 we concluded that for two-dimensional lattices 

2. Series expansions for the mean cluster size at low densities 

2.1. Site problem 

The method described in I 0 2 (based on the techniques proposed by Domb (1959) and 
Martin (1974)) is immediately applicable without modification to a three-dimensional 
lattice. We have derived perimeterpolynomials, Q ( q )  as defined in I, through D9 for the 
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face-centred cubic lattice, through Dlo for the body-centred cubic lattice, through D1 
for the simple cubic lattice and through DI4 for the diamond lattice. The rapid growth 
of the total number of clusters with increasing number of sites restricts the number of 
perimeter polynomials that can be obtained from a reasonable expenditure of computer 
time. The asymptotic behaviour of the total number of connected clusters appears to be 
approximately represented by 

D~(I)=AS- 'A~.  (2.1) 

(For a theoretical justification of the presence of a factor A s  in (2.1) see Klarner (1967).) 
From a Pad6 approximant and ratio analysis (Gaunt and Guttmann 1974) we estimate 
that 8 is about 3/2 and the corresponding indicated values of the cluster growth 
parameter (A)  are: 

FCC A = 13.95 * 0.08 

BCC A = 11.19f0.06 

sc A = 8.35 f 0.04 

D A = 5.54*0*03. 

In two dimensions 8 = 1 (I 9 2) and estimates of two-dimensional growth parameters are 
given in equation (2.4) of I. 

We give the values of the perimeter polynomials in the appendix. From them the 
mean size of clusters at low densities 

follows by the method of I. An extra coefficient would be obtained if the corresponding 
expansion for the mean number of clusters were available to the appropriate order but 
in practice this is quite difficult to derive. We give the values of the b, in table l(a). 

2.2. Bond problem 

By direct machine enumeration we have derived perimeter polynomials for the bond 
problem through D7 for the face-centred cubic lattice, through D8 for the body-centred 
cubic lattice, through D9 for the simple cubic lattice and through DlZ for the diamond 
lattice. As in two dimensions the cluster growth parameters in (2.1) are larger than 
those for the corresponding site mixtures: 

A = 23.80 * 0.20 FCC 

BCC A =15-25*0.10 

sc A = 10.62 f 0.06 
(2.4) 

D A = 6.13 f 0.03. 

For bond mixtures the series expansion for the mean number of clusters is readily 
obtained from the number of weak embeddings of linear (star) graphs in the lattice. The 
technique is described in detail by Essam and Sykes (1966) and we have added an extra 
term to the expansion of S ( p )  in every case. The additional weak k weights required are 
given by Heap (1966). We give the coefficients b, corresponding to the bond problem in 
table l ( b ) .  
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Table 1. Coefficients for expansion of S(p) = Z,b,p'. 

( a )  Site problem 

r Face-centred 
1 12 
2 84 
3 504 
4 3012 
5 17142 
6 96228t 
7 532028t 
8 2918388t 
9 15763866" 

10 
11 
12 
13 
14 

(6) Bond problem 
1 22 
2 234 
3 2348 
4 22726 
5 214642 
6 1993002 
7 18266276t 
8 165688208t 
9 

10 
11 
12 
13 

Body-centred 
8 
56 
248 
1232 
5690 
26 636 
113 552 
532 736t 
2 207 108t 
10 385 062t 

14 
98 
650 
4202 
26 162 
163 154 
984 104 
6 015 512 
35 540 288t 

Simple cubic 
6 
30 
114 
438 
1542 
5754 
19 574 
71 958 
233 574t 
870 666t 
2 696 274t 

10 
50 
238 
1114 
4998 
22 562 
98 174 
434 894 
1 855 346 
8 125 390t 

Diamond 
4 
12 
36 
108 
264 
708 
1668 
4536 
10 926 
28 416 
67 824t 
172 464t 
408 484t 
1035 932t 

6 
18 
54 
162 
456 
1302 
3630 
10 158 
27 648 
77 022 
206 508 
570 072t 
1521 822t 

t New coefficient. 

3. Analysis of series 

To study the expansions for S ( p )  given in table l(a) and ( b )  we have followed 
procedures similar to those described in I1 0 2 for the two-dimensional lattices. In 
general the series are not sufficiently well behaved with the number of coefficients at 
present available, to provide anything more than rather rough estimates of the critical 
parameters. For this reason we omit the details of the standard ratio and Pad6 
approximant analyses and simply present the results. 

Convergence appears to be best for the bond problem on the face-centred cubic 
lattice and we estimate by Dlog Pad6 and ratio techniques that 

pc  = 0.1 19 f 0.001 FCC( B) . (3.1) 

This estimate is in good agreement with recent evidence from other sources. For 
example, Essam et a1 (1976) obtained exactly the same result from an analysis of the 
moments of the cluster size distribution. Dunn et a1 (1975) found that a more precise 
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estimate may be obtained from the second moment of the pair connectedness and 
concluded that 

pc  = 0.1 190 * 0-0005 FCC( B) . (3.2) 

The poles of the Pad6 approximants to (dldp) In S ( p )  plotted against the corresponding 
residues define quite accurately a single smooth curve (or pole-residue plot) from which 
we obtain the estimate 

y = 1.66*0*02+90Apc. (3.3) 

Assuming [Apcl 6 0.001, corresponding to (3.1)7 then (3.3) gives 

y = 1.66f 0.1 1. (3.4) 

Assuming instead IApc/ s 0.0005 corresponding to (3.2) we obtain 

y = 1.66 f 0-07. (3.5) 

The series for the other three-dimensional mixtures are not inconsistent with y = 1.66 
but we have found it difficult to draw any more precise conclusions. The same estimate 
as (3.5) was obtained recently by Essam etaZ(l976) while Dunn er aZ(l975) (using the 
mean size defined by site content) obtained y = 1.70*0*11. Monte Carlo estimates 
include y = 1.8*0*05 (Kirkpatrick 1976) and y = 1-6 j~0 .1  (Sur et a1 1976, private 
communication). Our estimate (3.5) lies well within the uncertainty limits of all other 
estimates except that due to Kirkpatrick. 

Making the not unreasonable assumption that y is a dimensional invariant, as it 
seems to be in two dimensions (see 11), we have used the estimate (3.4) to obtain more 
precise (although ‘biased’) estimates of pc7 namely 

and 

p c  = 0.198 * 0.003 FCC( S )  

p c  = 0.245 * 0.004 BCC(S) 

pc=0*310 *0*004 sc(s) 
p c  = 0.428 f 0.004 dS). 

(3.7) 

The central estimates in (3.6) are identical (to the first three decimal places) with those 
given by Sykes and Essam (1964); our uncertainties are rather smaller in general. For 
the site problems we have three or four more coefficients than were available to Sykes 
and Essam and our central estimates in (3.7) are some 0.002 or 0.003 higher than theirs 
and have smaller uncertainties. For the simple cubic site problem recent Monte Carlo 
work has given pc = 0.312 * 0.001 (Kirkpatrick 1976) and pc = 0.3 115 * 0.0005 (Sur et 
al, private communication) in good agreement with (3.7). 
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We have used the central estimates of p c  together with y = 1-66 to estimate, by the 
usual Pad6 methods, the critical amplitude C defined by (1.1). Our results are 

0.041 *0.001 FCC( B) 

0.074*0*001 BCC(B) 

0*122* 0.001 S C b )  

0.222 * 0.002 D(B) 

(3.8) 

and 

(3.9) 

0.101 * 0.001 FCC(S) 

0*142*0*001 BCC(S) 

0*185*0.002 sc(s) 

0.26 1 * 0.005 D(SL 

The uncertainties inp, and in y each introduce additional uncertainties in C of about 

+4*9Apc - 2*1p,A7. (3.10) 

For both site and bond mixtures the amplitudes are seen to decrease monotonically with 
increasing lattice coordination number, in agreement with the Bethe approximation 
(Fisher and Essam 1961). It seems that on a given lattice the amplitude for the bond 
problem is always less than for the corresponding site problem. The opposite is true in 
the Bethe approximation. 

4. Conclusions 

Although we have found it very difficult to draw precise conclusions, all the available 
series appear to be reasonably consistent with the hypothesis that y is a dimensional 
invariant for both bond and site mixtures in three dimensions. Our best estimate of 
y = 1.66*0.07 is close to 15 and we adopt this simple fraction as a convenient 
mnemonic to replace the earlier tentative value of lE(= 1.6875) of Sykes and Essam 
(1964). 
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Appendix. Perimeter polynomials for the site problem 

Face-centred cubic lattice 

D1=q'* D2=6q1' D3=8q22+ 12q23+30q24 

D4= 2q24+27q26+48q27+96q28+ 144q29+ 158q30 

D5 = 24q28+6q29+ 132q30+264q31 +423q32+780q33 + 1194q34+ 1212q35+846q36 
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0 6  = 6q30 + 24q31 + 145q32 + 168q33 + 914q34 + 1308q35 + 2688q36 + 5000q37 

+7140q38+ IO 272q39+ 11 340q40+9168q41+4662q42 

D7=36q33+80q34+288q35+1220q36+ 1968q37+5382q38+10 308q3'+18 918q40 
+31 128q41+53 616q42+75 528q43+93 852q44+ 110 680q45 

+ 98 496q46 + 65 700q47 + 26 182q48 

D8= 24q35+58q36+576q37+ 1098q38+3336q39+ 10 176q40+ 17 712q4' 
+ 42 672q42 + 77 862q43 + 140 142q44+ 244 659q45 + 389 142q46 

+ 575 652q47 + 802 362q48 + 980 4 % ~ ~ ~  + 1 085 5O2q5O+ 1 066 224q5' 

+804 912q52+456 888q53+ 149 934q54 

D9= 6q37+ 152q38+504q39+ 1616q4O+6558q4l+ 14 109q42+36 068q43 

+85 875q44+168 600q45+351 436q46+635 168q47+ 1 147 140q48 

+ 1938 126q4'+3 097 776q50+4 684 860q5'+6 594 194q52 

+ 8 692 066q53 + 10 577 942q54 + 11 507 324q55 + 11 296 227q56 

+ 9  590904q57+6 335 391q58+3 124 172q59+871 6O5q6O. 

Body -centred cubic lattice 

D1 = q8 D2=4q14 D3 = 12q17+ 12q1'+4q2O 
D4 = 42q20+ 78q2'+ 32q23 + 36q24 + 24qZ5 +4q26 

D5 = 6q21 + 152q23 + 30q24 + 408q25 + 182qZ6 + 384qZ7 + 336qZ8 + 144qZ9 
+ 108q30+36q31+4q32 

D6 = 51qZ4+ 24q25+632q26+ 204q27+2088q28+ 1352q29+ 2748q30+ 2568q31 
+ 2 1 12q32 + 2016q33 + 1044q34 + 480q35 + 2 16q36 + 48q37 + 4q38 

D7 = 12q2' + 169 26 + 324q27 + 144q28 + 3096q29 + 2O58q3O + 10 4 16q31 + 8774q3' 
+ 18 408q33+ 18 438q34+20 884q35+20 820q36+ 15 024q37 

+ 11 184q38 +6756qj9+282Oq4O+ 1148q41+360q42+60q43+4q44 

D8=8q26+102q28+96q29+2316q30+1956q31+ 16 O02q3'+15 192q33+56 142q34 

+57 196q35+ 119 664q36+ 132 588q37+ 169 858q38+ 179 238q3' 

+ 164 856q40 + 147 638q41 + 107 388q42+67 320q43+40 276q44 

+ 18 432q45+6780q46 +2256q47+540q48+72q49+4q50 

Ds=q26+48q29+1320q31+ 1448q32+15 186q33+18 228q34+90048q35 
+ 106 470q36+325 710q37+390 862q'8+773 976q39+929 61Oq4O 

+ 1 288 146q4' + 1 460 972q4' + 1 536 180q43+ 1 518 148q44 

+ 1 295 178q45+ 1 027 578q46 +734 684q47+440 454q48+240 324q4' 

+ 116 266q50 +44 28Oq5l + 14 196q5'+ 3912q53 + 756q54 + 84q55 +4q56 
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D10=6q29+12q31+770q32+480q33+12 072q34+ 16 552q35+101 292q36 

+ 149 064q37+552 824q38+763 944q39+2 000 136q4”+2 685 656q41 

+ 5 107 226q4’ + 6 584 694q43 + 9 491 284q44+ 11 426 458q45 

+ 13 115 682q46+ 14 005 452q47+ 13 476 452q48+ 12 123 168q49 

+ 9  883 164qS0+7 239 324q5’+490086Oqs2+2 923 84Oqs3 

+1521 540q54+720672q55+290912q56+95 8O8qs7+26 880q58 

+ 6 2 2 ~ ~ ~  + 1O08q6O+ 96q6* + 4q6’. 

Simple cubic lattice 

D1=q6 D2 = 3q lo D3= 12q13+3q14 

D4 = 8q” +51q16+ 24q17+ 3q18 

D5 = 12q17 + 99q” + 228q19 + 156qZ0+ 36qZ1 + 3q” 

D6 = 6q18 + 28OqZ0+ 732qZ1 + 1 128q2’ + 96Oqz3 + 324qZ4 +48q2’ + 3qZ6 

0, = ql8+72qz1 +662q22+2496q23+4990q24+6432q25+5682q26+2564q27 

+ 540q28 + 60q29 + 3q30 

D8 = 12qZ1 + 6qZ2 + 288qZ3 + 2O89qz4 + 8340q2’ + 20 3 16qZ6 + 33 3 12qZ7 + 39 3 12qZ8 
+ 34 635qZ9+ 18 456q30+ 5256q31 +816q3’ +72q33 + 3q34 

D9=48qz3+90qz4+ 1284qz5+7415qZ6+30 60Oqz7+79 512qZ8+ 154 936qZ9 

+226 5O9q3O+250 476q3’+217 704q3’+ 128 460q33+45 285q34 
+ 93 12q3’ + 1 152q36 + 84q37 + 3q38 

Dlo = 212q2’ +753q26+ 5224qZ7 + 32 O84qz8 + 115 836qZ9+ 323 100q30+690 O28q3l 
+ 1 163 910q3’+ 1550 322q33+ 1649 106q34+ 1405 920q35 

+884 058q36+363 864q37 +93 546q38+ 15 128q39+ 1548q40 

+ 96q41 + 3q4’ 

Dll = 78qz6+788qZ7+4476qz8+27 564qZ9+ 134 622q30+485 724q3’ 

+1347 336q3’+3 077 772q33+5 692 578q34+8 618 172q3’ 

+ 10 775 094q36+ 11 069 256q37+9 316 278qs+6 083 556q39 

+ 2  805 O54q4O+858 312q41+ 172 794q4’+22 980q43+2004q44 
+ 1 0 8 ~ 4 ~  + 3q46. 

Diamond lattice 

D~ = q4  0 2  = 2q6 0 3  = 6q8 D4 = 22q lo 

D5= 12q”+79q1’ 

D7 = 16q13 +66q14+ 7929 l5 + 932q16 

D6 = 2q”+ 120ql3 +276q14 
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Ds = 15q 14+ 1 8 4 p  +936q l6 +4152q17 + 31O6ql8 

Dg=6q15+292q16+1872q17+8152q18+18 984q1y+10407q20 

Dlo= 19q16+336q17+3876q1s+ 16 968q1’+53 574qzo+80 40Oqz1+35 452q2’ 

Dll = 369 l 7  + 5 14q18+ 6546q19 + 39 1 14qZ0+ 132 6209’l + 294 948q22 

+ 329 652qZ3 + 122 486q24 

D12 = 3Oql8+ 1140q1’+ 11 198qZ0+82 362qZ1 + 337 9O1qz2+ 873 864qZ3 

+ 1476 224qZ4+ 1 333 152qZ5+427 14Oqz6 

DI3 =66q19+ 1990qZ0+22 884q21 + 169 262q2’+815 214qZ3+2 502 843q24 

+ 5  109 308q25+7 020 06Oqz6+5 345 004q27+ 1498 7139” 

D14 = 164q2O+3O64q2’+48 694q2’+365 O82qz3+ 1914 214q24+6 774 18Oqz5 

+ 16403 O34qz6+27 712 992q27+32 374 92Oqz8+21 256 836qZ9 

+ 5  286 414q30. 
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